

Electrocatalytic Reduction of Dioxygen in the Presence of *N,N'*-Dipentyl Viologen

Mi-Kyung Oh,[†] Takeyoshi Okajima, Fusao Kitamura, Chi-Woo Lee,[†] Koichi Tokuda, and Takeo Ohsaka*

Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering,

Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226

[†]Department of Chemistry, College of Natural Sciences, Korea University, Jochiwon, Choong-nam 339-700, Korea

(Received August 29, 1996)

An excellent electrocatalysis of *N,N'*-dipentyl viologen, which is based on not the dissolved species but the adsorbed one, has been observed for the electroreduction of O₂ to H₂O₂ at glassy carbon electrode in neutral aqueous media. The rate constant for the catalytic reaction was estimated to be ca. 10⁶ ~ 10⁷ M⁻¹s⁻¹ based on cyclic and hydrodynamic voltammetry.

Viologen radical cations have been well known to reduce O₂ molecules with very high specific rates¹⁻³ and can be thus expected as potential catalysts for the electroreduction of O₂. However, contrary to our expectations, there have been only a few papers on the "electrocatalysis" of viologens for O₂ reduction.⁴⁻⁸ This is surprising in comparison with a large number of papers concerning homogeneous and heterogeneous redox properties of various viologens.⁹⁻¹³

In the present work we examined the electrocatalysis of *N,N'*-dipentyl viologen (C₅V²⁺•2Br⁻), which gives the clear two couples of redox response (for the dication/monocation radical (C₅V²⁺/C₅V⁺) couple) ascribed to the dissolved species as well as the adsorbed one, for O₂ reduction. It is thermodynamically possible for these both species to catalyze O₂ reduction. We are interested in clarifying which species (state) has, in practice, an electrocatalytic activity for O₂ reduction, *i.e.*, both, either or neither of them.

All electrochemical experiments were performed at laboratory temperature (25 ± 2 °C) using a standard three-electrode, two-compartment configuration with a glassy carbon (GC, Tokai Carbon Co., Ltd., area: 0.0707 cm²) as the working electrode, a spiral platinum counter electrode and a KCl-saturated Ag/AgCl reference electrode.

Figure 1 shows typical cyclic voltammograms demonstrating the electrocatalytic activity of C₅V²⁺ for the reduction of O₂ in 0.2 M (1 M = 1 mol dm⁻³) KBr aqueous solution. The voltammogram (a) observed in the presence of C₅V²⁺ shows a greatly enhanced reduction current and a large positive shift in the cathodic peak of about 400 mV in comparison with that (b) obtained in the absence of C₅V²⁺. The voltammogram (b) corresponds to the reduction O₂ to H₂O₂. These facts clearly demonstrate the electrocatalytic reduction of O₂ via a redox cycling of the C₅V²⁺/C₅V⁺ redox couple. The redox response of C₅V²⁺ itself was observed as three couples of waves (c) under N₂ atmosphere, that is, a broad wave around -0.45 V, the cathodic and anodic peaks for the dication/monocation radical couple at -0.6 V and those for the monocation radical/neutral species couple at ca. -1.0 V (not shown here). Based on the fact that the cathodic peak current of the most positive wave around -0.45 V is proportional to potential scan rate *v* (not *v*^{1/2}), this wave was ascribed to the redox reaction of the adsorbed C₅V²⁺ species (its surface coverage: (1.0 ± 0.5) ×

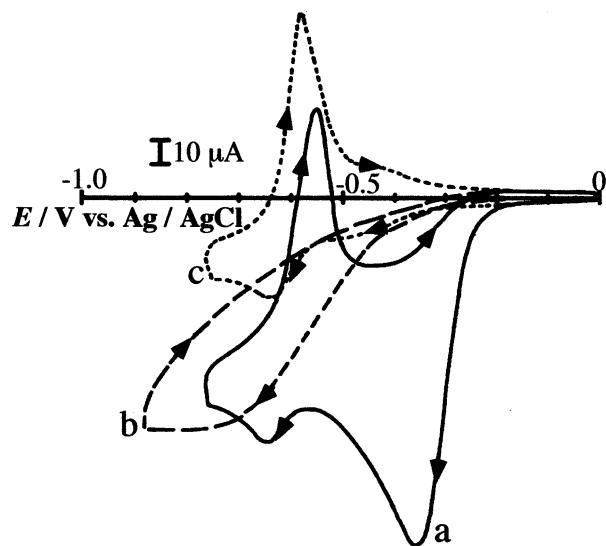
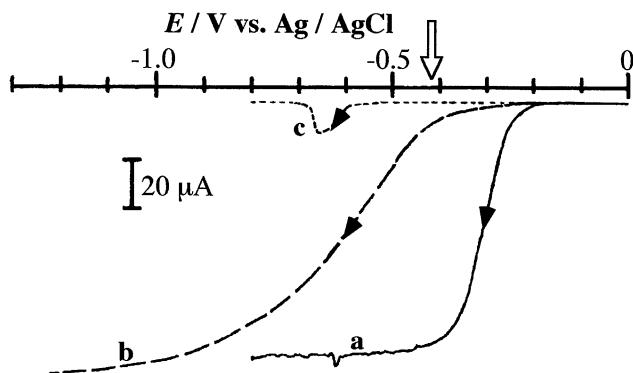



Figure 1. Cyclic voltammograms (a, c) obtained at GC electrode in 0.2 M KBr solution containing 1.0 mM C₅V²⁺ under the atmosphere of O₂ (a) and N₂ (c). The voltammogram (b) was obtained in O₂-saturated 0.2 M KBr solution. Potential scan rate: 500 mVs⁻¹.

10⁻¹⁰ mol cm⁻²).¹⁴ On the other hand, the cathodic peak current at -0.63 V was almost proportional to *v*^{1/2} as expected for a diffusion-controlled, nernstian reaction. The anodic peak current for the reoxidation of the monocation radical to its dication is much larger than the corresponding cathodic one, possibly due to a precipitation of the monocation radical species on the electrode surface (as usually observed⁹). Here it should be noted that the redox wave of the dissolved C₅V²⁺ species at -0.63 V is essentially unaffected by the presence of O₂. The dissolved C₅V²⁺/C₅V⁺ couple (its formal potential *E'*_{soln} = ca. -0.61 V) is expected to catalyze O₂ reduction even more strongly than the adsorbed couple since the difference of its formal potential (*E'*_{ad} = ca. -0.44 V) with that (0.22 V at pH 7) of the O₂/H₂O₂ couple is smaller. These show that a total consumption of O₂ in the reaction layer occurs in the potential range where the redox reaction of the adsorbed C₅V²⁺/C₅V⁺ couple occurs, that is, the reduction of O₂ is actually catalyzed by the adsorbed species, not by the dissolved one under the present experimental conditions.¹⁶ The catalytic cathodic peak current *i_p*^c at -0.37 V is thus considered to be essentially controlled by the diffusion of O₂ from the bulk of the solution to a thin reaction layer adjacent to the electrode where the concentration of O₂ is actually zero. This was supported from the fact that

Figure 2. Typical steady-state voltammograms (a,c) obtained at rotating disk GC electrode in 0.2 M KBr solution containing 1.0 mM C_5V^{2+} under the atmosphere of O_2 (a) and N_2 (c). The voltammogram (b) was obtained in O_2 -saturated 0.2 M KBr solution. Potential scan rate: 2 mVs⁻¹. Electrode rotation rate: 400 rpm. The arrow (▼) represents E'_{ad} .

i_p^c was proportional to $v^{1/2}$ at $v < 100$ mVs⁻¹ with its value almost comparable to that expected for a two-electron, reversible reaction of O_2 to H_2O_2 . The rate constant (k) for the electrocatalytic O_2 reduction was estimated to be $(7 \pm 3) \times 10^6$ M⁻¹s⁻¹¹⁸ from the values of E_p^c (the electrocatalytic cathodic peak potential) and E'_{ad} , being comparable to those at viologen polymer-coated electrodes.^{4,6}

The catalytic reduction of O_2 by the adsorbed C_5V^+ could be also observed as the positive shift of the half-wave potential, $E_{1/2}$ (at $i = 0.5 i_{lim}$) of the hydrodynamic voltammogram in the presence of C_5V^{2+} , compared with that in its absence (Figure 2 a,b). The value of k could be estimated to be $(5 \pm 2) \times 10^6$ M⁻¹s⁻¹¹⁸ from the potential difference between $E_{1/2}$ (in the presence of C_5V^{2+}) and E'_{ad} ,^{5,20} being in fair agreement with that obtained from cyclic voltammetry. The small spike-like signal on the limiting current of voltammogram (a) is due to the one-electron reduction of the dissolved C_5V^{2+} species and the subsequent precipitation of the resulting monocation radical species on the electrode surface (see (c)).²¹ The fact that the limiting current is almost the same as that in the absence of C_5V^{2+} indicates that the overall catalytic process is two-electron reaction of O_2 to H_2O_2 and at the same time that it is actually diffusion-controlled of O_2 in agreement with the above-mentioned cyclic voltammetric results. Note that the reciprocal slope of the log plot (i.e., $\log [i/(i_{lim} - i)]$ vs. E plot) had a value of 72 ± 5 mV rather than the 59 mV value expected from Nernst's equation for the C_5V^{2+}/C_5V^+ couple. This could be because the electrochemical waves of surface-confined redox species show substantial activity effect, as previously pointed out.^{5,22}

In conclusion, the present study demonstrates an excellent electrocatalysis of the adsorbed species of N,N' -diphenyl viologen on the GC electrode surface, which is in equilibrium

with the dissolved one, for the electroreduction of O_2 in neutral aqueous solutions. The electrocatalysis of the dissolved species, which is also possible thermodynamically, could not be observed under the present experimental conditions.

The present work was financially supported by a Grant-in-Aid for Scientific Research in Priority Areas of "New Polymer and Their Nano-Organized Systems" (No. 277/08246219) from the Ministry of Education, Science, Sports and Culture, Japan.

References and Notes

- 1 R.N.F.Thorneley, *Biochim. Biophys. Acta*, **333**, 487(1974).
- 2 F.Rauwel and D.Thevenot, *J. Electroanal. Chem.*, **75**, 579 (1977).
- 3 J.A.Farrington, M.Ebert, and E.J.Land, *J. Chem. Soc. Faraday Trans. 1*, **74**, 665 (1978).
- 4 P.Martigny and F.C.Anson, *J. Electroanal. Chem.*, **139**, 383 (1982).
- 5 N.Oyama, N.Oki, H.Ohno, Y.Ohnuki, H.Matsuda, and E. Tsuchida, *J. Phys. Chem.*, **87**, 3642 (1983).
- 6 P.Janda, J.Weber, and L.Kavan, *J. Electroanal. Chem.*, **180**, 109 (1984).
- 7 C.- W. Lee and J.- M. Jang, *Bull. Korean Chem. Soc.*, **15**, 563(1994).
- 8 C.P.Andrieux, P.Hapiot, and J.M.Saveant, *J. Electroanal. Chem.*, **189**, 121 (1985).
- 9 C.L.Bird, *Chem. Soc. Rev.*, **10**, 49 (1981).
- 10 R. W. Murray, *Molecular Design of Electrode Surfaces*, Wiley, New York (1992).
- 11 N.Oyama, T.Ohsaka, H.Yamamoto, and M.Kaneko, *J.Phys. Chem.*, **90**, 3850 (1986).
- 12 T.Ohsaka, H.Yamamoto, and N.Oyama, *J. Phys. Chem.*, **91**, 3775 (1987).
- 13 O.Hatozaki, T.Ohsaka, and N.Oyama, *J. Phys. Chem.*, **96**, 10492 (1992) and references therein.
- 14 Adsorption of C_5V^{2+} on the electrode surface strongly depends on its substrate.¹⁵
- 15 F. Kitamura, T. Ohsaka, and K. Tokuda, *J. Electroanal. Chem.*, **347**, 371(1993).
- 16 The too large difference between E'_{soln} and E_p^c may also suggest that the electrocatalytic O_2 reduction via the dissolved C_5V^{2+}/C_5V^+ couple is unreasonable.¹⁷
- 17 C. P. Andrieux, C. Blocman, J. M. Dumas- Bouchiat, F. M'Halla, and J. M. Saveant, *J. Electroanal. Chem.*, **113**, 19 (1980).
- 18 A relatively large scatter in k is due to a broad redox response of the adsorbed species and thus an uncertainty in estimation of E'_{ad} .
- 19 C. P. Andrieux and J. M. Saveant, *J. Electroanal. Chem.*, **93**, 163 (1978).
- 20 N.Oyama, Y.Ohnuki, T.Ohsaka, and H.Matsuda, *Nippon Kagaku Kaishi*, **1983**, 949.
- 21 The present results suggest that the C_5V^+ precipitation layer is permeable to O_2 and almost impermeable to C_5V^{2+} .
- 22 A.P.Brown and F.C.Anson, *Anal. Chem.*, **49**, 1589 (1977).